

NRCS Soils Program - Massachusetts

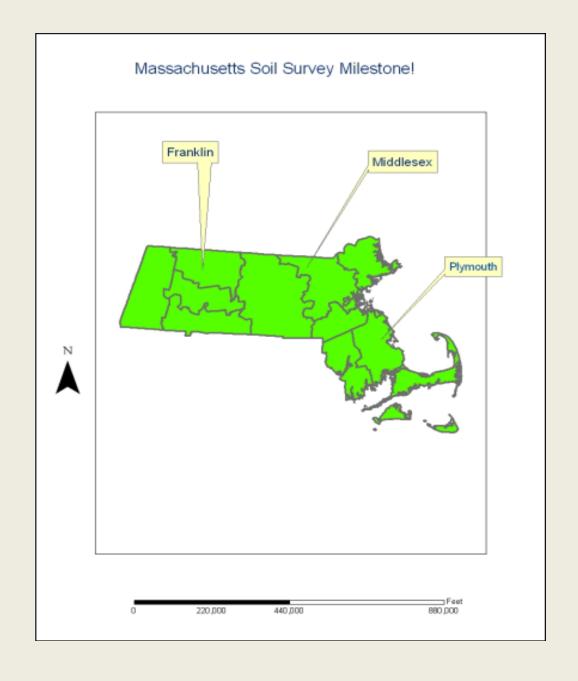
Program Highlights, Overview

Soils information changes that may affect you

Massachusetts Soil Survey

19 SOIL SURVEY AREAS

182 SOIL SERIES


2294 MAP UNITS

9017 COMPONENTS

24998 HORIZONS

129 DATA ELEMENTS PER HORIZON = 3, 224,742

National Soil Survey Program Organization/Functions

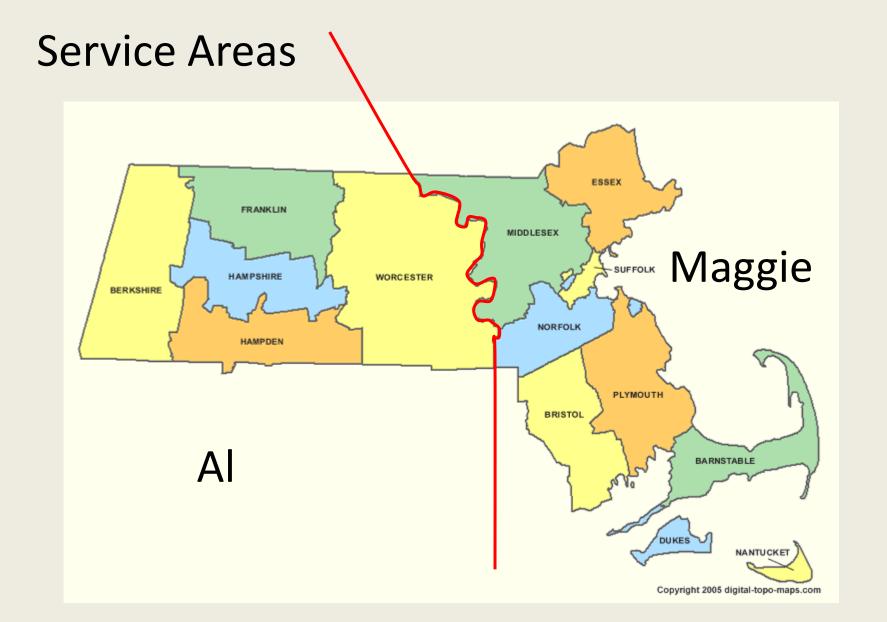
Inventory/production

-MLRA Soil Survey

Offices

-Soil Survey

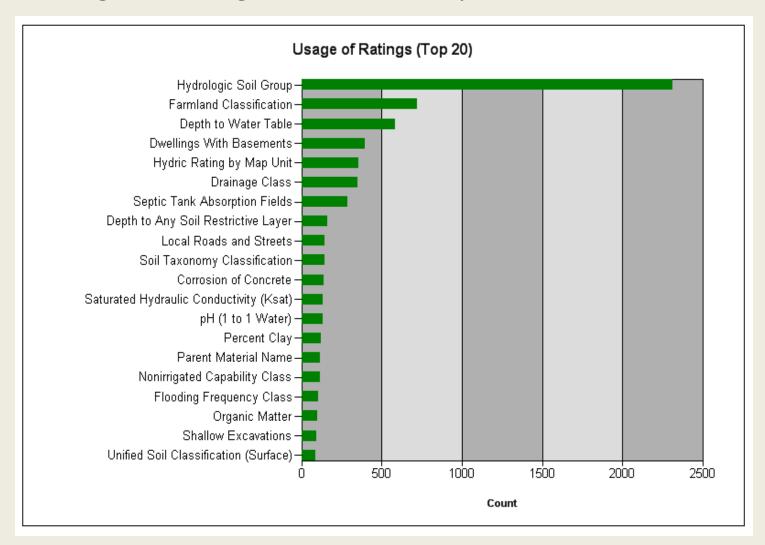
Delivery


-State Soil Scientist

-Technical Soil
Services

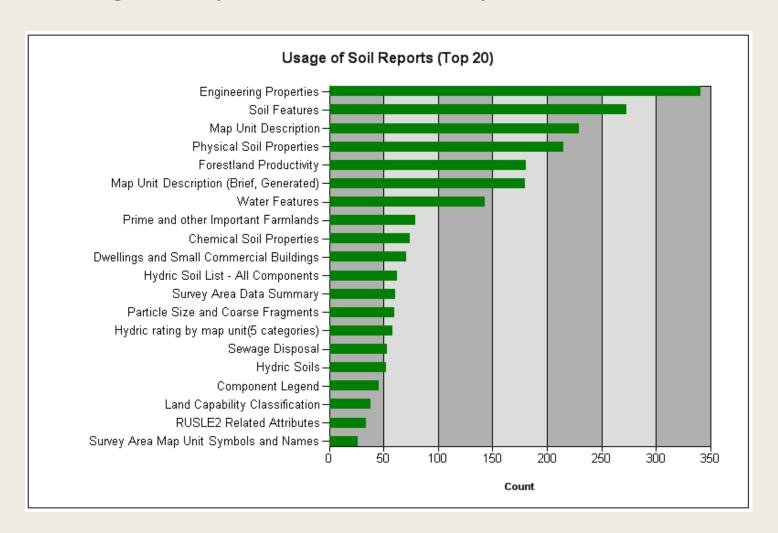
Technical Soil Services The Presentation and Application of Soil Survey Information

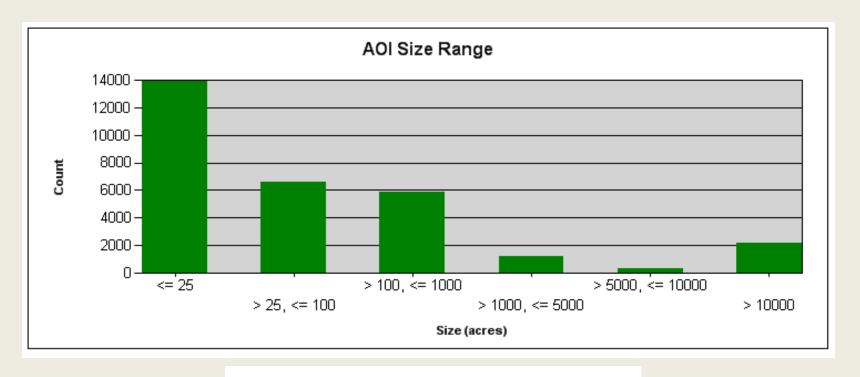
- Site investigations: design and program support
- Training: use and understanding of soils information
- Liaison to NCSS partners, promote involvement, solicit input
- Regional and state soil survey planning conferences
- ID information needs and deficiencies



Use of Soil Survey Information

What's the most sought after soil interpretation in MA?


- A. Septic tank absorption fields
- **B.** Farmland classification
- C. Depth to seasonal high water table
- D. Hydrologic soil group


Usage of Ratings, MA Soil Surveys – Last 12 months

HSG: 2311 of 9415 instances - 25%

Usage of Reports, MA Soil Surveys – Last 12 months

Size Range (acres)	Count
<= 25	13925
> 25, <= 100	6617
> 100, <= 1000	5840
> 1000, <= 5000	1192
> 5000, <= 10000	337
> 10000	2143
Total:	30054

Changes in Interpretive Values

Historical values – specific parameters, interpolation, comparison with soils having similar properties

•
NHOROL SOIL INTERPRETATIONS RECORD
MLRA(S): 142+ 143+ 1448 REV- GLR+HRM+ 9-84 TYPIC HAPLORTHODS, COARSE-LOAMY+ MIXED+ FRIGID
THE BECKET SERIES CONSISTS OF VERY DEEP, WELL DRAINED SOILS ON DRUMLINS AND GLACIATED UPLANDS. THEY FORMED IN GLACIAL TILL. TYPICALLY THESE SOILS HAVE A DARK BROWN FINE SANDY LOAM SURFACE LAYER B INCHES THICK. THE SUBSOIL FROM 8 TO 12 INCHES IS STRONG BROWN FINE SANDY LOAM, FROM 12 TO 22 INCHES IS YELLOWISH BROWN GRAVELLY SANDY LOAM, FROM 22 TO 31 INCHE IS LIGHT OLIVE BROWN GRAVELLY SANDY LOAM. THE SUBSTATUM FROM 31 TO 60 INCHES IS FIRM OLIVE GRAVELLY LOAMY SAND. SLOPES RANGE FROM 3 TO 60 PERCENT.
ESTIMATED SOIL PROPERTIES (A)
IFRACT: PERCENT OF MATERIAL LESS : LIQUID : PLAS- : (IN-): USDA TEXTURE UNIFIED AASHTO
0-8 FSL, L, SL
DEPTHICLAY :MOIST BULK: PERMEA- : AVAILABLE : SOIL : SALINITY : SHRINK- : EROSION: WIND : ORGANIC: CORROSIVITY : (IN.): (PCT): DENSITY : BILITY :WATER CAPACITY: REACTION: (MMHOS/CM): SWELL : FACTORS: EROD -: MATTER :
0-8
FLOODING : HIGH WATER TABLE : CEMENTED PAN : BEDROCK :SUBSIDENCE :HYD:POTENT*L: DEPTH : KIND :HONTHS :DEPTH:HARDNESS:DEPTH :HARDNESS:INIT.:TOTAL:GRP1 FROST :
FREQUENCY : QURATION

As of 10/1/14 – Interpretive values calculated factoring data elements populated for each soil and layer

	1					0/					_																									
	_	neage				mp %																														
	DM	U Rec II		Seq	Low	RV	High		Comp	onent	t Nan	ne		V				Local	Phase					Taxon	Kind		/	Major	Comp	onent			SI	R phas	e - ob	solete
		63	9133	2		5		Berna	ardston						very	stony						se	eries													
	Horizon						eld Compone	ent D	iagnostic Feat	ures	Com	ponen	t Eco	logical S	ite 0	Compon	ent Er	rosion	Acceler	ated	Comp	onent Ex	kisting	Plants	Compo	onent F	orest l	Produc	tivity	Compo	nent (Geomor	phic De	escription	on C	ompo
			Top De	Bottom	. Thickness					To	otal F	Fragme	ent Vo	olume			Rock	>10				Rock 3	-10				#	4					#1	.0		
	۹,		RV	RV	RV		Designation		Master △	Lov	W	RV		High		Low	R۱	٧	High		Low	RV		High	Lo	ow	R	V	Н	igh	Lo	w	R۱	٧	Hi	gh
	>	+ -	0	15	5 15	Ap		C	A	M	5	С	5]	M 1	10 (0	C	0	C	16 C	5	С	5 C	26	C	80.0	С	94.0	C	94.0	С	70.0	С	94.0	С	94.
		+ 🔻	15	25	5 10	Bw1		C	В	M	10	C	10	M 2	25 C	0	C	0	C	22 C	9	С	9 (39	C	70.0	C	90.0	C	90.0	C	61.0	C	90.0	C	90.0
		+ -	25	51	1 25	Bw2		C	В	M	10	C	15	M 2	25 C	0	C	0	C	21 C	9	C 1	13 (38	C	71.0	С	85.0	C	90.0	С	62.0	C	85.0	С	90.
		+ 🔻	91	165	5 74	Cd2		C	С	M	10	С	30]	м 3	30 C	0	C	0	C	17 C	6	C	19 (34	C	73.0	С	77.0	C	93.0	С	66.0	С	77.0	С	93.
		+ 🔻	51	9:	1 4:	Cd1		C	С	M	10	С	25]	м 3	30 C	0	C	0	C	17 C	7	C	16 (34	C	73.0	C	81.0	C	93.0	C	65.0	С	81.0	С	93.
				_													-																			

ponent	t x	T Horizon													
		Lineage			Comp %										
	[DMU Rec ID	Seq	Low	RV	High		Componen	t Name		⊽	Local Phase		Taxon Kind	Maj
- ▼		639133		2	5	F	Bernardston			(Very	stony	series		
<u> </u>		003100		-			oci i da do do i				VCI	50011	52.1123		
			_		- '	Component '	Taxonomic F	-			xonomic	Family Other Criteria Component			Text Co
	Compo	onent Restrictio	_	nt Surface F Top Depth	1	Component '		h		nponent Ta Thickness RV	xonomic			ture Class Component	
	Compo	onent Restrictio	ns Compone	Top Dept	. High	Component E	Taxonomic F Bottom Depti	h		Thickness RV	xonomic	Family Other Criteria Componen	: Taxonomic Mois	ture Class Component	

Newly Calculated Interpretive Values

- K-factor
- Steel and concrete corrosion
- Wind erodibility
- T-factor
- Hydrologic Soil Group

Hydrologic Soil Group

- Used to estimate direct runoff from rainfall.
- Relative measure of the amount of material comprising a given soil type that can absorb and transmit water.

Hydrologic Soil Groups

Data elements factored in calculation

- Depth to restrictive layer
- Saturated hydraulic conductivity
- Depth to seasonal high water table

Group A.

Excessively to well drained, permeable throughout.

Group B.

Well and moderately well drained, relatively deep to water table and slowly permeable layer.

Group C.

Well and moderately well drained, relatively shallow to water table and slowly permeable layer.

Group D.

Well drained to very poorly drained, shallow depth to water table and/or slowly permeable layer.

<u>Dual hydrologic group</u> – A/D, B/D, C/D assigned to soils in class D that behave as A, B or C if drained. <u>THE FIRST LETTER INDICATES THE DRAINED CONDITION</u>.

Table 7-1 Criteria for assignment of hydrologic soil group (HSG)

Depth to water impermeable layer 1/	Depth to high water table 2/	K _{sat} of least transmissive layer in depth range	K _{sat} depth range	HSG 3/
<50 cm [<20 in]	_	_	_	D
		>40.0 μm/s (>5.67 in/h)	0 to 60 cm [0 to 24 in]	A/D
	<60 cm [<24 in]	>10.0 to ≤40.0 µm/s (>1.42 to ≤5.67 in/h)	0 to 60 cm [0 to 24 in]	B/D
		>1.0 to ≤10.0 µm/s (>0.14 to ≤1.42 in/h)	0 to 60 cm [0 to 24 in]	C/D
50 to 100 cm		≤1.0 μm/s (≤0.14 in/h)	0 to 60 cm [0 to 24 in]	D
[20 to 40 in]		>40.0 μm/s (>5.67 in/h)	0 to 50 cm [0 to 20 in]	A
	≥60 cm [≥24 in]	>10.0 to ≤40.0 µm/s (>1.42 to ≤5.67 in/h)	0 to 50 cm [0 to 20 in]	В
		>1.0 to ≤10.0 µm/s (>0.14 to ≤1.42 in/h)	0 to 50 cm [0 to 20 in]	C
		≤1.0 μm/s (≤0.14 in/h)	0 to 50 cm [0 to 20 in]	D
		>10.0 μm/s (>1.42 in/h)	0 to 100 cm [0 to 40 in]	A/D
	<60 cm	>4.0 to ≤10.0 µm/s (>0.57 to ≤1.42 in/h)	0 to 100 cm [0 to 40 in]	B/D
	[<24 in]	>0.40 to ≤4.0 µm/s (>0.06 to ≤0.57 in/h)	0 to 100 cm [0 to 40 in]	C/D
>100 cm		≤0.40 μm/s (≤0.06 in/h)	0 to 100 cm [0 to 40 in]	D
[>40 in]		>40.0 μm/s (>5.67 in/h)	0 to 50 cm [0 to 20 in]	A
	60 to 100 cm	>10.0 to ≤40.0 µm/s (>1.42 to ≤5.67 in/h)	0 to 50 cm [0 to 20 in]	В
	[24 to 40 in]	>1.0 to ≤10.0 µm/s (>0.14 to ≤1.42 in/h)	0 to 50 cm [0 to 20 in]	C
		≤1.0 μm/s (≤0.14 in/h)	0 to 50 cm [0 to 20 in]	D
		>10.0 μm/s (>1.42 in/h)	0 to 100 cm [0 to 40 in]	A
	>100 cm	>4.0 to ≤ 10.0 µm/s (>0.57 to ≤1.42 in/h)	0 to 100 cm [0 to 40 in]	В
	[>40 in]	>0.40 to ≤4.0 µm/s (>0.06 to ≤0.57 in/h)	0 to 100 cm [0 to 40 in]	C
		≤0.40 μm/s (≤0.06 in/h)	0 to 100 cm [0 to 40 in]	D

^{1/} An impermeable layer has a K_{sat} less than 0.01 µm/s [0.0014 in/h] or a component restriction of fragipan; duripan; petrocalcic; orstein; petrogypsic; cemented horizon; densic material; placic; bedrock, paralithic; bedrock, lithic; bedrock, densic; or permafrost.

In/hr	Permeability Class
>5.67	moderately rapid to very rapid
>1.42-5.67	moderate to moderately rapid
>.57-1.42	moderately slow to moderate
>.0657	slow to moderately slow
<.06	very slow to impermeable

National Engineering Handbook, Part 630 Hydrology, Chapter 7.

^{2/} High water table during any month during the year.

 $^{3/\,}$ Dual HSG classes are applied only for wet soils (water table less than 60 cm [24 in]). If these soils can be drained, a less restrictive HSG can be assigned, depending on the $K_{\rm sat}$

MA Technical Soil Services Program Staff

Maggie Payne— Resource Soil Scientist 508-295-5151 x119

maggie.payne@ma.usda.gov

Al Averill – State Soil Scientist 413-253-4382 al.averill@ma.usda.gov